Assoziativgesetz der Addition und Multiplikation (Klammergesetz)

Als Assoziativgesetz bezeichnet man Rechenregeln, die bestimmen, in welcher Reihenfolge mehrere Rechnungen in einer Formel ausgeführt werden. Von besonderer Bedeutung für die Schule sind das Assoziativgesetz der Addition und das Assoziativgesetz der Multiplikation. Beide Gesetze werden bereits in der Grundschule gelernt und sollten von jedem Schüler ohne Probleme angewandt werden können.

Assoziativgesetz der Addition

Das Assoziativgesetz der Addition bezieht sich auf Formeln, in denen mehrere Additionen nacheinander durchgeführt werden. Es besagt, dass es keine Rolle spielt, welche der Additionen zuerst und welche zuletzt durchgeführt werden.

Als Formel ausgedrückt lautet das Assoziativgesetz der Addition:

Assoziativgesetz der Addition

Diese Formel zeigt den Fall, dass drei Zahlen a, b und c addiert werden. Hier kommen wir jedes Mal zum selben Ergebnis, egal in welcher Reihenfolge die Zahlen addiert werden. Es können also sowohl zuerst a und b, als auch b und c addiert werden, bevor die jeweils dritte Zahl addiert wird. Es ist sogar möglich, zuerst a und c zu addieren.

Die Klammern in der Formel geben die Reihenfolge der Rechnung an. Auf der linken Seite der Formel ist die Addition von b und c eingeklammert und wird deshalb vor der Addition mit a durchgeführt. Auf der rechten Seite ist die Addition von a und b eingeklammert und wird vor der Addition von c durchgeführt. Das Assoziativgesetz der Addition besagt, dass bei mehreren Additionen gleichgültig ist, um welche der Addition eine Klammer gesetzt ist und um welche nicht. Das Assoziativgesetz wird deshalb häufig auch „Klammergesetz“ genannt.

Beispiel für das Assoziativgesetz der Addition

Ein Beispiel für das Assoziativgesetz der Addition ist die Berechnung von:

Beispiel für das Assoziativgesetz der Addition

Hier können wir frei entscheiden, welche der beiden Zahlen wir zuerst addieren und welche wir als drittes addieren. So ergibt sich:

Beispiel für die Anwendung des Assoziativgesetzes der Addition

Wenn wir die Regeln des Assoziativgesetz der Addition als Baum darstellen, wird besonders deutlich, wie wir bei der Rechnung vorgehen können:

Baumdarstellung des Assoziativgesetzes der Addition

Assoziativgesetz der Multiplikation

Das Assoziativgesetz der Multiplikation gilt für Formeln, in denen mehrere Zahlen, bzw. Terme, nacheinander multipliziert werden. Es besagt, dass die Reihenfolge, in der die einzelnen Multiplikationen ausgeführt werden, keinen Einfluss auf das Ergebnis hat.

Als Formel ausgedrückt lautet das Assoziativgesetz der Multiplikation:

Assoziativgesetz der Multiplikation

In dieser Formel werden die drei Zahlen a, b und c miteinander multipliziert. Auf der rechten Seite der Formel wird der Fall dargestellt, dass zuerst a und b miteinander multipliziert werden und das Ergebnis anschließend mit c multipliziert wird. Auf der linken Seite wird der Fall dargestellt, dass zuerst b und c miteinander und anschließend mit a multipliziert werden. Es wäre ebenso möglich zuerst a und c miteinander und anschließend mit c zu multiplizieren. Das Assoziativgesetz der Multiplikation besagt, dass alle Rechnungen dasselbe Ergebnis liefern.

Beispiel für das Assoziativgesetz der Multiplikation

Das Assoziativgesetz der Multiplikation können wir beispielsweise bei der Berechnung dieser Formel anwenden:

Beispielmultiplikation

In welcher Reihenfolge wir die Faktoren multiplizieren spielt für das Ergebnis keine Rolle. Es gelten die drei Fälle:

Beispiel für die Klammerung bei der Multiplikation

Wie man leicht überprüfen kann, führen alle drei Rechnungen zu demselben Ergebnis, auch wenn die Faktoren jeweils in anderer Reihenfolge multipliziert wurden.

Brüche erweitern

Will man einen Bruch erweitern, muss man Zähler und Nenner mit derselben Zahl multiplizieren. Weil sich Zähler und Nenner dabei um denselben Faktor vergrößern, ändert sich der Wert des Bruches nicht (das Erweitern eines Bruches entspricht einer Multiplikation mit einem Bruch, der den Wert „1“ hat). Die umgekehrte Operation zum Erweitern von Brüchen ist das Kürzen von Brüchen. Für eine noch ausführlichere Hilfe besteht immer die Möglichkeit einer Mathe Nachhilfe.

Die allgemeine Formeln, um Brüche zu erweitern, lautet:

Brüche erweitern: allgemeine Formel

In der folgenden Tabelle werden mehrere Brüche gezeigt. Sie haben alle unterschiedliche Zähler und Nenner. Ihr Wert ist aber derselbe. Die oberen vier Brüche stellen dabei eine Erweiterung des untersten Bruchs (1/2) dar:

Beispiel: Ein Bruch durch Erweiterung in verschiedene Darstellungen gebracht

Beispiele zum Erweitern von Brüchen

Die folgenden Beispiele zeigen, wir sich Brüche erweitern lassen:

Verschiedene Beispiele zum Erweitern von Brüchen

Im ersten Beispiel wird der Bruch 3/4 mit 2 erweitert, im zweiten 5/7 mit 9 und in den letzten beiden Beispielen wird zweimal der Bruch 1/12 erweitert, einmal mit 12 und einmal mit 6.

Das folgende Beispiel zeigt, was passiert, wenn man einen Bruch zweimal erweitert. Er hat danach dieselbe Darstellung, als hätte man ihn direkt mit dem Produkt der beiden Zahlen erweitert:

Beispiel: Zweimaliges Erweitern

Der Grund hierfür liegt im Assoziativgesetz der Multiplikation

Wozu muss man Brüche erweitern?

Zähler und Nenner werden beim Erweitern größer. Die Bruchrechnung wird dadurch eher komplizierter. Warum soll man Brüche also überhaupt erweitern?

Der Grund liegt darin, dass man zwei Brüche nur dann vergleichen, addieren oder subtrahieren kann, wenn sie denselben Nenner haben. Deshalb muss man Brüche häufig gleichnamig machen. Zwei gleichnamige Brüche sind Brüche, die denselben Nenner haben. Falls man die Brüche nicht auf denselben Nennen bringen kann, indem man einen von ihnen kürzt, muss man die Brüche erweitern. Die einfachste Möglichkeit, zwei Brüche gleichnamig zu machen, ist es, sie jeweils um den Nenner des anderen Bruchs zu erweitern.

Das folgende Beispiel zeigt, wie man die Brüche 3/4 und 1/5 gleichnamig macht. Dabei wird der erste Bruche mit 5, der zweite mit 4 erweitert. Anschließend haben beide denselben Nenner:

Beispiel: Brüche durch Erweitern gleichnamig machen

Ableitungen

Auf dieser Seite findest Du die wichtigsten Ableitungsregeln der Mathematik. Die Ableitung einer Funktion gibt die Steigung des Funktionsgraphen an einem bestimmten Punkt an. Ableitungen werden für eine Vielzahl von Anwendungen der Mathematik benötigt. Zum Beispiel, um das Maximum oder Minimum einer Funktion zu errechnen.

Grundlegende Ableitungsregeln

Formel Bedeutung
Ableitung einer Variablen Ableitung einer Variablen
Ableitung einer Variablen mit Faktor Ableitung einer Variablen mit Faktor
Ableitung einer Quadratfunktion Ableitung einer Quadratfunktion
Ableitung eines Bruches Ableitung eines Bruches
Ableitung einer Wurzel Ableitung einer Wurzel
Allgemeine Ableitungsregel für Potenzfunktionen Allgemeine Ableitungsregel für Potenzfunktionen

Spezielle Ableitungsregeln

Formel Bedeutung
Ableitung von e (Eulersche Zahl) Ableitung von e (Eulersche Zahl)
Ableitung Exponentialfunktion Ableitung einer Exponentialfunktion
Ableitung des Logarithmus Ableitung des Logarithmus
Ableitung des Sinus Ableitung des Sinus
Ableitung des Cosinus Ableitung des Cosinus
Ableitung des Tangens Ableitung des Tangens

Ableitungsregeln für verknüpfte Funktionen

Formel Bedeutung
Summenregel Summenregel
Produktregel Produktregel
Quotientenregel Quotientenregel
Kettenregel Kettenregel

Wozu benötigt man Ableitungen?

Ableitungen geben die Steigung des Graphen einer Funktion an einem Punkt x an. Mit Ableitungen lässt sich also leicht ermitteln, ob und wie stark der Graph steigt oder fällt. Das hat mehrere Vorteile. Wenn beispielsweise ein Wert von der Zeit t abhängt, kann man mit Ableitungen berechnen, wie schnell er sich zu einem bestimmten Zeitpunkt ändert. Außerdem kann man mit Ableitungen von Funktionen die Maxima oder Minima der Funktionen berechnen. Dort, wo die erste Ableitung null ist, befindet sich in jedem Fall ein Extrempunkt. Wenn die zweite Ableitung negativ ist, handelt es sich um ein Maximum, wenn sie aber positiv ist, handelt es sich um ein Minimum. Natürlich gibt es noch viel mehr Fälle in denen man Ableitungen für Mathe braucht.

Es ist sinnvoll, wenn Schüler regelmäßig die wichtigsten Ableitungen üben. Natürlich können sie auch jedesmal in einer Ableitungen Tabelle nachschauen. Damit lernen sie sie aber nicht wirklich, sondern müssen immer eine Formelsammlung dabei haben, wenn sie mit ihnen rechnen wollen. Das ist für Klausuren und Klassenarbeiten noch vertretbar, aber gerade im Studium oder im Berufsalltag kann es sein, dass sie schnell einmal eine Formel durchrechnen müsse, ohne eine Formelsammlung Mathe zur Hand zu haben. Es ist daher immer sinnvoll wenn Schülern selbst Ableitungen bilden können. Das ist sogar noch sinnvoller, als für jede Funktion die jeweilige Ableitung auswendig zu lernen.

Am besten üben Schüler, indem sie immer wieder für Ableitungen Übungsaufgaben durchrechnen. So werden sie mit ihnen vertraut und lernen, wie sie sie nutzen müssen. Schließlich gibt es in der fortschritlichen Mathematik kaum etwas so wichtiges wie Ableitungen.

 

Brüche addieren und subtrahieren

Brüche werden addiert, indem man sie zuerst auf denselben Nenner bringt und anschließend ihre Zähler addiert. Die allgemeine Formel zur Addition von Brüchen, in der beide Schritte zusammengefasst sind, lautet:

Addition von Brüchen mit unterschiedlichem Nenner

Brüche werden subtrahiert, indem man sie ebenfalls zuerst auf denselben Nenner bringt und anschließend ihre Zähler subtrahiert. Die allgemeine Formeln zur Subtraktion von Brüchen, in der wieder beide Schritte zusammengefasst sind, lautet:

Formel: Brüche subtrahieren

Wie werden die Nenner bei der Addition von Brüchen behandelt?

Zu den wichtigsten Regeln beim Bruchrechnen gehört, dass nur gleichnamige Brüche, d.h. Brüche mit dem gleichen Nenner, addiert oder subtrahiert werden dürfen. Die Nicht-Beachtung dieser Regel ist ein häufiger Fehler. Jeder Schüler sollte sie daher im Schlaf beherschen.

Damit zwei Brüche addiert oder subtrahiert werden dürfen, muss man sie zunächst auf denselben Nenner bringen. Falls der Nenner des einen Bruches ein Vielfaches des Nenners des anderen Bruchs ist, lassen sich die beiden Brüche sehr einfach auf denselben Nenner bringen. Manchmal genügt es sogar den Summanden mit dem größeren Nenner zu kürzen. In der Regel wird man aber den Summanden mit dem kleineren Nenner auf den größeren Nenner erweitern.

Falls beide Summanden unterschiedliche Nenner haben, ist es schwieriger sie nennergleich zu machen. In diesem Fall gibt es zwei Möglichkeiten: Entweder sucht man zunächst das kleinste gemeinsame Vielfache der Nenner (kgV) und erweitert beide Brüche auf diesen Nenner, oder man erweitert jeden der beiden Brüche mit dem Nenner des jeweils anderen Bruchs (wie oben in den Formeln zum Subtrahieren und Addieren von Brüchen dargestellt). Falls man sich für die zweite Möglichkeit entscheidet, sollte man die Summe, bzw. die Differenz der beiden Brüche im Anschluss aber noch einmal kürzen.

Beispiele für die Addition und Subtraktion von Brüchen

Die folgende Grafik verdeutlicht, wie Brüche addiert werden:

Brüche addieren: Grafisches Beispiel

In den oberen beiden Zeilen werden die ursprünglichen Brüche (2/5 und 1/3) dargestellt. In der dritten Zeile sieht man das Ergebnis der Addition als Strecke. Man kann hier aber noch nicht die Darstellung dieser Summe als Bruch ablesen. Hierfür ist es notwendig die beiden Brüche zunächst nennergleich zu machen (4. Zeile) und anschließend die Zähler zu addieren (5. Zeile).

Zwei weitere Beispiele für die Addition von Brüchen sind:

Beispiele zur Addition von Brüchen

Und zwei Beispiele für die Subtraktion von Brüchen sind:

Beispiele für die Subtraktion von Brüchen

 

Binomische Formeln

Die binomischen Formeln gehören zum grundlegenden Rüstzeug für Schüler aller Schularten. Mit Hilfe der binomischen Formeln wird die Potenz der Summe zweier Zahlen (häufig als a und b bezeichnet) gebildet. Die Rechnung mit Potenzen wird auf diese Weise erheblich vereinfacht. Anstatt nämlich zwei große Zahlen multiplizieren zu müssen, brauchen die Schüler nach Anwendung der binomischen Formeln nur noch zwei kleinere Zahlen miteinander zu multiplizieren und deren Summe zu bilden.

In der Mathematik werden drei binomische Formeln unterschieden:

  • Die erste binomische Formel beschreibt den Fall, dass zwei Zahlen a und b addiert und die Summe potenziert wird.
  • Die zweite binomische Formel wird in dem Fall angewendet, dass b von a subtrahiert wird.
  • Die dritte binomische Formel wird schließlich angewendet, wenn wir zwei unterschiedliche Faktoren haben, nämlich einen, in dem a und b addiert, und einen, in dem b von a subtrahiert wird.

Zu den wichtigen Punkten, die ein Schüler im Zusammenhang mit den binomische Formeln lernen muss, gehört es zu erkennen, welche der drei binomischen Formeln in einer konkreten Aufgabe angewandt werden muss.

Binomische Formeln

Formel Bedeutung
Erste binomische Formel Erste binomische Formel
Zweite binomische Formel Zweite binomische Formel
Dritte binomische Formel Dritte binomische Formel

Grafische Herleitung

Schaubild zur grafischen Herleitung der ersten binomischen Formel

Die obige Grafik zeigt, wie sich die erste binomische Formel grafisch herleiten lässt. Sie zeigt ein Quadrat, dessen Kantenlänge a + b beträgt. Seine Fläche lässt sich daher mit (a + b)2 berechnen. Dieses Quadrat setzt sich wiederum aus verschiedenen Flächen zusammen. Die grün umrandete Fläche entspricht mit a2 dem ersten Summanden der binomischen Formel, die blau umrandete mit b2 dem letzten Summanden. Die beiden rot umrandeten Rechtecke, deren Fläche jeweils a * b beträgt, entsprechen zusammen dem mittleren Summanden 2ab. Anhand dieser einprägsamen Grafik lässt sich sofort erkennen, dass die Fläche des großen Quatdrats (a + b)2 der gemeinsamen Fläche der beiden kleinen Quadrate und der beiden Rechtecke (a2 + 2ab + b2) entspricht. Hierin finden wir also die erste binomische Formel wieder:

Erste binomische Formel mit Farben

Herleitung der 3 binomischen Formeln

Die binomischen Formeln werden hergeleitet, in dem zuerst die Potenz hoch zwei aufgelöst wird in die Multiplikation zweier Summen (bzw. zwei Differenzen oder einer Summe mit einer Differenz). Anschließend wird zuerst die Summe in der vorderen Klammer ausmultipliziert. Jeder der beiden Summanden wird mit der zweiten Klammer multipliziert. Anschließend wird auch die zweite Klammer ausmultipliziert. Wir haben nun vier Summanden mit unterschiedlichen Vorzeichen. Zwei der Summanden sind die Quadrate von a und b. Die beiden anderen Summanden jeweils das Produkt aus a und b. Die drei binomischen Formeln unterscheiden sich in den Vorzeichen ihrer Summanden. Durch Zusammenfassung der Summanden werden die binomischen Formeln in ihre endgültige Form aus drei, bzw. zwei Summanden gebracht.

Herleitung der 1. binomischen Formel

Herleitung der ersten binomischen Formel

Herleitung der 2. binomischen Formel

Herleitung der zweiten binomischen Formel

Herleitung der 3. binomischen Formel

Herleitung der dritten binomischen Formel