Blog

Gaußsche Summenformel

Mit der Gaußschen Summenformel lässt sich die Summe aller natürlichen Zahlen bis zu einer Obergrenze n berechnen. Sie lautet:

Gaußsche Summenformel

Wir können sie beispielsweise anwenden, um die Summe aller Zahlen von 1 bis 10 zu berechnen. Auf direktem Wege berechnen wir die Summe als:

Direkte Berechnung der Summe von 1 bis 10

Mit Hilfe der Gaußschen Summenformel vereinfacht sich die Berechnung zu:

Direkte Berechnung der Summe von 1 bis 10

Die Gaußsche Summenformel ist nach dem Mathematiker Carl Friedrich Gauß (1777 – 1855) benannt.

Herleitung der Gaußschen Summenformel

Wie sich die Gaußsche Summenformel herleiten lässt, können wir erkennen, indem wir beispielsweise die Summe der Zahlen von 1 bis 100 bilden.

Hierfür erstellen wir eine Tabelle. In der ersten Spalte notieren wir die Zahlen von 1 bis 50 in aufsteigender Reihenfolge, in der zweiten Spalte die Zahlen von 100 bis 51 in absteigender Reihenfolge. Somit stehen in den ersten beiden Spalten alle natürlichen Zahlen von 1 bis 100.

Nun notieren wir noch in der dritten Spalte die Summe der Zahlen in den ersten beiden Spalten derselben Reihe. Die gesuchte Summe aller natürlichen Zahlen von 1 bis 100 entspricht dann der Summe aller Zahlen in der dritten Spalte.

Insgesamt erhalten wir die folgende Tabelle:

1 100 101
2 99 101
3 98 101
4 97 101
5 96 101
46 55 101
47 54 101
48 53 101
49 52 101
50 51 101

Wir wir sehen ist der Wert in der dritten Spalte jeder Zeile der Tabelle derselbe. Insgesamt hat die Tabelle 50 Zeilen. Die gesuchte Summe lässt sich leicht berechnen: 50 x 101 = 5050

Wir können dieses Ergebnis verallgemeinern. Sei n gerade und die Zahl, bis zu der wir die Summe bilden wollen, so steht in der dritten Spalte jeder Zeile der Wert: n + 1. Insgesamt gibt es n/2 Zeilen. Das Produkt aus der Anzahl der Zeilen und der Summen in der letzten Spalte ist: Gaußsche Summenformel - inline.

Für ungerade n berechnen wir die Summe der natürlichen Zahl bis n-1 und addieren n:

Gaußsche Summenformel für ungerade n

Beweis der Gaußschen Summenformel per vollständiger Induktion

Wir können die Gaußsche Summenformel auch per vollständiger Induktion beweisen.

Im Induktionsbeginn beweisen wir, dass sie für n=1 gilt.

Induktionsbeginn Gaußsche Summenformel

Nun treffen wir die Induktionsannahme, dass sie für ein beliebiges n’ gilt:

Induktionsannahme Gaußsche Summenformel

Und zeigen, dass wir daraus herleiten können, dass sie auch für n’ + 1 gilt:

Induktionsschritt Gaußsche Summenformel

Die Induktionsannahme haben wir im ersten Schritt genutzt, um den blau markierten Teil der Formel umzuwandeln.

Der Induktionsschritt ist unter der Induktionsannahme gültig. Damit ist die Gaußsche Summenformel per vollständiger Induktion bewiesen.

Differenzenquotient

Mit dem Differenzenquotient berechnet man die Steigung einer Funktion in einem bestimmten Abschnitt. Seine Bedeutung wird anschaulich klar, wenn man sich vorstellt, dass man zwei Punkte auf dem Graphen einer Funktion markiert und zwischen ihnen eine Gerade zeichnet. Die Steigung der Geraden entspricht dann der Steigung der Funktion vom ersten zum zweiten Punkt. Den Wert der Steigung erhält man über den Differenzenquotienten.

Beispielgraph zum Differenzenquotient

Formal ist die Steigung einer Funktion f vom Punkt (a,f(a)) zu einem zweiten Punkt (b,f(b)) definiert, als der Quotient der Differenz der beiden Funktionswerte und der Differenz der beiden Variablen. Daher auch der Name Differenzen-Quotient. Die Formel für den Differenzenquotienten lautet also:

Differenzenquotient

Wenn wir zu einer gegebenen Funktion f und zwei Variablen a und b die Funktion g der Geraden berechnen wollen, die die beiden Punkte (a,f(a)) und (b,f(b)) verbindet, können wir wieder den Differenzquotienten nutzen und kommen so auf die Geradengleichung:

Geradengleichung zum Differenzenquotient

Eine solche Gerade, die zwei Punkte auf dem Graphen einer Funktion verbindet und den Graphen der Funktion an jedem der beiden Punkte schneidet, heißt Sekante.

Beispiele für den Differenzenquotient

Angenommen, wir haben die eine Funktion f mit dieser Funktionsgleichung:

Funktionsbeispiel zum Differenzenquotienten

Für diese Funktion, wollen wir die Steigung zwischen den beiden Punkten (2, f(2)) und (5, f(5)) berechnen.

Einsetzen der Werte in den Differenzenquotienten ergibt:

Beispiel für den Differenzenquotienten

Die Gleichung für die zugehörige Sekante lautet:

Mit Hilfe des Differenzenquotienten berechnete Sekantengleichung

Es handelt sich dabei also um eine Gerade mit der Steigung 7 und dem y-Achsenabschnitt -13.

Zusammenfassung Differenzenquotient

Der Differenzenquotient ist ein sehr nützliches Konzept in der Mathematik. Er ermöglicht es uns, eine Funktion an einem beliebigen Punkt zu bestimmen, ohne sie zu integrieren oder zu differentieren. Das ist besonders nützlich, wenn die Funktion sehr komplex ist und wir keine Antwort auf die Integration oder Differentiation erhalten können.

Brüche multiplizieren und dividieren

Brüche werden multipliziert, indem man jeweils ihre beiden Nenner und ihre beiden Zähler multipliziert. Die allgemeine Formel für die Multiplikation von Brüchen lautet:

Formel: Brüche multiplizieren

Brüche werden dividiert, indem man den ersten Bruch mit dem Kehrwert des zweiten Bruchs multipliziert. Die Formel für die Division von Brüchen lautet:

Formel: Brüche dividieren

Beispiele zur Multiplikation von Brüchen

In der folgenden Grafik ist die Multiplikation von Brüchen anschaulich dargestellt. Wir haben zehn Zeilen, von denen vier farbig markiert sind. Das heißt, es sind 4/10 aller Zeilen markiert. Außerdem haben wir zwölf Spalten, von denen fünf farbig markiert sind. Es sind also 5/12 aller Spalten markiert. Insgesamt ergeben alle Spalten und Zeilen zusammen 120 Kästchen. Das ist die Multiplikation der Nenner. Außerdem liegen 20 Kästchen sowohl in einer markierten Spalte als auch in einer markierten Zeile. Sie bilden die Multiplikation der Zähler. Die Zahl aller Kästchen, die sowohl in einer markierten Zeile, als auch in einer markierten Spalte liegen, geteilt durch die Gesamtzahl der Kästchen ist das gesuchte Produkt der beiden Ursprungsbrüche:

Grafische Darstellung der Multiplikation von Brüchen

Die folgenden Rechnungen zeigen weitere Beispiele zum Malnehmen von Brüchen:

Beispiel: Brüche malnehmen

Die folgenden Rechnungen zeigen Beispiele zum Teilen von Brüchen:

Beispiele: Brüche teilen

Kürzen beim Multiplizieren von Brüchen

Durch die Multiplikation von Zähler und Nenner, wenn man Brüche multipliziert, entstehen schnell große Zahlen. Wenn man die Brüche nicht kürzt, werden sie dadurch unübersichtlich und es können leicht Rechenfehler unterlaufen. Brüche sollten daher bei der Multiplikation immer gekürzt werden.

Beim Malnehmen von Brüchen sollte man die Brüche schon vor der Multiplikation kürzen. Dabei darf man auch über Kreuz kürzen. Das bedeutet, man darf den Zähler des einen Bruches mit dem Nenner des anderen Bruches kürzen.

Nehmen wir an, wir wollen die beiden Brüche 6/15 und 5/12 multiplizieren. Jeder einzelne der beiden Brüche lässt sich nicht weiter kürzen. Wir dürfen sie aber auch über Kreuz kürzen. Das bedeutet, dass wir den Zähler 6 des ersten Bruchs und den Nenner 12 des zweiten Bruchs mit 6 kürzen dürfen und den Zähler 5 des zweiten Bruchs mit dem Nenner 15 des ersten Bruchs. Die Rechnung sieht nun so aus:

Beispiel: Brüche bei der Multiplikation überkreuz kürzen

Wie man sieht, hat sich die Rechnung durch das Kürzen überkreuz erheblich vereinfacht.

Bruchrechnen

Bruchrechnen ist das Rechnen mit Bruchzahlen, bzw. Brüchen, die aus einem Zähler und einem Nenner bestehen. Alle Zahlen, die sich als Bruch darstellen lassen, gehören der Menge der rationalen Zahlen an. Das Bruchrechnen ist für weite Teile der Mathematik grundlegend.

Grundlegende Rechengesetze für Brüche

Formel Bedeutung
Erweitern eines Bruches Erweitern eines Bruches
Kürzen eines Bruches Kürzen eines Bruches
Multiplikation eines Bruches mit einer ganzen Zahl Multiplikation eines Bruches mit einer ganzen Zahl
Division eines Bruches durch eine ganze Zahl Division eines Bruches durch eine ganze Zahl

Grundrechenarten und Brüche

Formel Bedeutung
Addition von Brüchen mit gleichem Nenner Addition von Brüchen mit gleichem Nenner
Addition von Brüchen mit unterschiedlichem Nenner Addition von Brüchen mit unterschiedlichem Nenner
Multiplikation von Brüchen Multiplikation von Brüchen
Kehrwert eines Bruches Der Kehrwert eines Bruches
Division zweier Brüche Division zweier Brüche

Wozu braucht man Bruchrechnen?

Beim Bruchrechnen rechnet man mit den Teilen ganzer Zahlen. Das heißt, dass man nicht nur Aufgaben berechnet, in denen die natürlichen Zahlen vorkommen, sondern auch solche, in denen die sogenannten rationalen Zahlen benötigt werden. Bruchrechnen ist in vielen Zusammenhängen sinnvoll: Beispielsweise kann man mit seiner Hilfe ermitteln, wie man einen Kuchen aufteilt. Das geht oft ganz intuitiv, kann aber sehr nützlich sein, wenn man Bruchrechnen üben will. Will man beispielsweise einen Kuchen zu zweit essen, muss man ihn durch zwei teilen, also bekommt jeder einen halben Kuchen, will man ihn zu fünft essen, muss man ihn durch fünf teilen. Jeder bekommt jetzt ein Fünftel des Kuchens. Verzichtet aber einer auf sein Stück und gibt es stattdessen an einen Freund, kann dieser sogar zwei Fünftel des Kuchens essen. Diese praktische Anwendung der Bruchrechnung gehört zu den typischen Aufgaben im Bruchrechnen.

Was ist ein Bruch?

Eine Bruchzahl beschreibt eine Zahl als Quotient aus Zähler und Nenner. Der Bruchstrich hat dabei dieselbe Bedeutung wie das Geteilt-Zeichen. Oberhalb des Bruchstrichs steht dabei der Divident. Er wird in der Bruchrechnung als „Zähler“ bezeichnet. Unterhalb des Bruchstrichs steht der Divisor. Er wird in der Bruchrechnung als „Nenner“ bezeichnet.

Zähler und Nenner

Ausgesprochen wird der Bruch, indem man den Zähler als Menge und den Nenner als Einheit benennt. Der Zahl im Nenner hängt man dafür die Silbe „-tel“ an. Der Bruch aus dem Beispiel wird also als „fünf Siebtel“ ausgesprochen.

Der Wert eines Bruchs

Wie der Wert eines Bruches zustande kommt, kann man sich anhand eines praktischen Beispiels deutlich machen. Hierfür stellen wir uns vor, dass wir eine Torte aufteilen. Wir teilen sie in eine bestimmte Anzahl von Stücken auf (beispielsweise 8) und nehmen uns sechs dieser Stücke. Dann haben wir »sechs Achtel« der Torte. Die Anzahl der Stücke, in die die Torte insgesamt unterteilt wird, entspricht also dem Nenner und die Anzahl der Stücke, die wir erhalten, dem Zähler.

Im Folgenden werden einige Brüche in Bruchdarstellung und als Strecke abgebildet.

Beispiele für verschiedene Brüche

Brüche vergleichen

Wenn man Brüche vergleicht, muss man daran denken, dass der Zähler (steht über dem Bruchstrich) den Bruch größer macht, während der Nenner den Bruch kleiner macht. Das bedeutet, dass von zwei Bruchzahlen mit demselben Nenner der Bruch größer ist, dessen Zähler größer ist. So sind die nächsten drei Brüche der Größe nach sortiert. Anhand der Streckendarstellung erkennt man leicht, dass der Bruch mit dem größten Zähler auch den größten Wert hat.

Brüche mit gleichem Zähler

Umgekehrt verhält es sich bei Brüchen mit gleichem Zähler und unterschiedlich großem Nenner. Bei gleichem Zähler ist der Bruch am größten, der den kleinsten Nenner hat. Die nächsten drei Brüche haben alle denselben Zähler und sind wieder der Größe nach sortiert. In der Streckendarstellung erkennt man leicht, wie größere Nenner (d.h. kleinere Streckenabschnitte) zu kleineren Brüchen führen.

Brüche mit gleichem Nenner

Brüche kürzen und erweitern

Beim Bruchrechnen steht man häufig vor dem Problem, dass zwei Bruchzahlen, die man vergleichen, addieren oder subtrahieren will, unterschiedliche Nenner haben. In diesen Fällen muss man den Nenner von einem oder beiden Brüchen ändern. Dies funktioniert, indem man den Bruch kürzt oder erweitert.

Um Brüche zu erweitern, werden einfach der Zähler und der Nenner mit derselben Zahl multipliziert. Der Bruch behält dabei seinen Wert, weil sich Zähler und Nenner um denselben Faktor ändern.

Die folgenden vier Brüche haben beispielsweise alle denselben Wert, auch wenn sie alle unterschiedliche Zähler und Nenner haben:

Verschiedene Brüche mit dem gleichen Wert

Beim Kürzen von Brüchen geht man den umgekehrten Weg wie beim Erweitern: Anstatt Zähler und Nenner mit derselben Zahl zu multiplizieren, dividiert man sie durch dieselbe Zahl. Dies geht natürlich nur, wenn Zähler und Nenner einen gemeinsamen Teiler haben. Wenn der Zähler und der Nenner keinen gemeinsamen Teiler mehr haben, ist es nicht möglich, den Bruch weiter zu kürzen. In diesem Fall spricht man von einem vollständig gekürztem Bruch.

Häufig steht man auch vor der Aufgabe aus einem Bruch einen vollständig gekürzten Bruch herzustellen. Hierfür sucht man nach dem größten gemeinsamen Teiler (ggT) von Zähler und Nenner und teilt beide Bestandteile des Bruches durch diese Zahl. Am einfachsten geht dies indem man alle Primfaktoren ermittelt, die gemeinsamen Primfaktoren multipliziert und Zähler und Nenner durch das Ergebnis teilt.

In der folgenden Tabelle sind für vier Brüche jeweils der größte gemeinsame Teiler und die Darstellung als vollständig gekürzter Bruch angegeben:

Bruch ggT Vollständig gekürzter Bruch
Sechs Achzehntel 3 Ein Drittel
Zwanzig Sechunddreißigstel 4 Fünf Neuntel
Dreißig Einundzwanzigstel 3 Zehn Siebtel
Viertausendzweihundertfünfunddreißig Fünfundzwanzigtausendvierhundertzehntel 4235 Ein Sechstel

Wie man vor allem an dem letzten Beispiel erkennt, kann die Darstellung von Brüchen durch das Kürzen oft erheblich vereinfacht werden.

Brüche nennergleich machen

Zwei Brüche können nur direkt verglichen, addiert oder subtrahiert werden, wenn sie nennergleich sind. In der Bruchrechnung steht man daher oft vor dem Problem, dass man zwei Brüche auf denselben Nenner bringen muss.

Im einfachsten Fall ist der Nenners des einen Bruchs ein Vielfaches des anderen. Dies ist beispielsweise bei den Brüchen 3/5 und 13/15 der Fall. Hier genügt es den Bruch mit dem kleineren Nenner um den Quotienten beider Nenner zu erweitert. So erhalten wir in dem Beispiel die beiden Brüche 9/15 und 13/15.

Falls keiner der beiden Nenner ein Vielfaches des anderen Nenners ist, muss man die Nenner beider Brüche anpassen. Dafür ermittelt man zuerst das kleinste gemeinsame Vielfache und bringt beide Brüche auf diesen Nenner. Hat man beispielsweise die beiden Brüche 3/4 und 5/6 ist das kleinste gemeinsame Vielfache der Nenner 12. Um 3/4 auf den Nenner 12 zu bringen, muss man mit 3 erweitern:

Drei Viertel um drei erweitern

Und um 5/6 auf den Nenner 12 zu bringen, muss man mit 2 erweitern:

Fünf Sechstel mit zwei erweitern

Oft ist es auch gar nicht notwendig, den kleinsten möglichen gemeinsamen Nenner zu finden. In vielen Fällen reicht es in der Bruchrechnung aus, überhaupt einen gemeinsamen Nenner zu haben. Dann kann man auch einfach jeden der beiden Brüche jeweils um den Nenner des anderen Bruches erweitern. Im Falle von 3/4 und 5/6 erhalten wir so:

Drei Viertel um sechs erweitertn

und:

Fünf Sechstel um vier erweitern

Brüche addieren und subtrahieren

Brüche werden addiert oder subtrahiert, indem man sie zunächst nennergleich macht und anschließend ihre Zähler addiert oder subtrahiert. Diese Reihenfolge ist fundamental für die Bruchrechnung. Da hier eine Quelle für viele Fehler liegt, sollte sie jeder Schüler verinnerlichen: Nur nennergleiche Brüche dürfen addiert oder subtrahiert werden.

Wollen wir beispielsweise die Brüche 11/6 und 6/8 addieren, können wir folgendermaßen rechnen:

Addition von elf Sechstel mit sechs Achtel

Brüche multiplizieren

In der Bruchrechnung multipliziert man zwei Brüche, indem man sowohl ihre Zähler, als auch ihre Nenner jeweils miteinander multipliziert. Hierbei entstehen oftmals große Zahlen, weshalb die Ergebnisse soweit möglich gekürzt werden sollten. Andernfalls schleichen sich bei Folgerechnungen schnell Rechenfehler ein, da die Rechnungen sehr kompliziert werden.

Die Brüche 3/7 und 14/9 werden beispielsweise folgendermaßen multipliziert:

Beispiel für die Multiplikation von Brüchen

Bei sehr großen Zähler und Nenner, kann man auch vor der eigentlichen Multiplikation bereits mit dem Kürzen beginnen. Hierfür schreibt man Zähler und Nenner jeweils als Produkte ihrer Primfaktoren und streicht anschließend alle Faktoren, die sowohl im Zähler als auch im Nenner vorkommen. So multipliziert man die Brüche 60/77 und 22/15 beispielsweise so:

Beispiel für die Multiplikation von Brüchen mit Kürzen

Brüche dividieren

Die Division von zwei Brüchen ist nicht viel schwieriger als die Multiplikation. So wird ein Bruch durch einen anderen dividiert, indem man ihn einfach mit dessen Kehrwert multipliziert. Der Kehrwert (oder auch das Inverse) eines Bruches beschreibt die Zahl, mit der man ihn multiplizieren muss, damit er zu 1 wird. Man kann ihn ganz einfach ermitteln, indem man einfach Nenner und Zähler vertauscht. Von 3/4 ist beispielsweise 4/3 der Kehrwert und von 12/7 ist es 7/12.

Will man den Bruch 5/8 durch 3/4 teilen rechnet man also:

Beispiel für die Division von Brüchen

Brüche kürzen

Brüche werden gekürzt, indem man den Zähler und den Nenner durch dieselbe Zahl teilt. Der Wert des Bruches ändert sich dabei nicht. Der Quotient aus Zähler und Nenner bleibt nämlich weiterhin derselbe. Die allgemeine Formel, um einen Bruch zu kürzen, lautet also:

Formel um einen Bruch zu kürzen

In der folgenden Tabelle sind fünf Brüche dargestellt, die alle denselben Wert haben. Die vier oberen Brüche lassen sich jeweils auf 1/2 (den untersten Bruch) kürzen. Wie man in der Streckendarstellung der Brüche gut erkennt, ändert sich der Wert durch das Kürzen nicht.

Verschiedene Brüche mit dem gleichen Wert

Warum kürzt man Brüche?

Brüche werden gekürzt, um die weitere Rechnung einfach zu hälten. Während man mit Brüchen rechnet kann es nämlich schnell vorkommen, dass im Zähler und Nenner große Zahlen stehen. In diesem Fall schleichen sich schnell Rechenfehler ein. Stehen beispielsweise im Zähler und Nenner vier- oder fünfstellige Zahlen, passieren bei der weiteren Rechnung leicht Flüchtigkeitsfehler. Man sollte Brüche kürzen, um solche Situationen zu vermeiden.

Man muss außerdem häufig Brüche kürzen, um ihren Wert zu vergleichen. Hat man beispielsweise die drei Brüche 20/60, 6/18 und 1/3 ist nicht sofort offensichtlich, wie sich die Werte dieser Brüche zueinander verhalten. Kürzt man die ersten beiden Brüche, indem man im ersten Zähler und Nenner durch zwanzig und im zweiten Zähler und Nenner durch sechs erteilt, sieht man dass alle drei Brüche gleich groß sind.

Was ist ein vollständig gekürzter Bruch?

Nicht jeder Bruch lässt sich noch weiter kürzen. Brüche können nämlich nur gekürzt werden, solange der Zähler und der Nenner einen gemeinsamen Teiler haben. Ist dies nicht der Fall, lässt sich der Bruch nicht kürzen. Man spricht in diesem Fall von einem vollständig gekürztem Bruch.

Vollständig gekürzte Brüche liegen insbesondere vor, wenn im Zähler eine Eins steht, wenn sich Zähler und Nenner nur um eins unterscheiden und wenn im Nenner oder Zähler eine Primzahl steht. Doch auch wenn keiner dieser drei Fälle zutrifft, kann es sein, dass sich ein Bruch nicht kürzen lässt, weil Zähler und Nenner teilerfremd sind. Dies kann man am sichersten überprüfen, indem man eine Primfaktorzerlegung von Zähler und Nenner erstellt. Wenn sie keine gemeinsamen Primfaktoren besitzen, kann der Bruch nicht mehr gekürzt werden.

Der folgende Bruch kann beispielsweise gekürzt werden, weil sowohl Zähler, als auch Nenner die Primfaktoren 2 und 3 enthalten:

Beispiel: Einen Bruch kürzen

Der folgende Bruch kann dagegen nicht mehr gekürzt werden, weil Zähler und Nenner teilerfremd sind:

Beispiel: Vollständig gekürzter Bruch

Um einen Bruch vollständig zu kürzen, geht man in zwei Schritten vor: Zuerst ermittelt man den größten gemeinsamen Teiler (ggT) von Zähler und Nenner. Dies ist die größte Zahl, die sowohl den Zähler, als auch den Nenner ohne Rest teilt. Anschließend teilt man Zähler und Nenner durch diese Zahl. Im ersten Beispiel oben ist Beispielsweise der größte gemeinsame Teiler von 126 und 330 die Zahl sechs. Deshalb ist der Bruch vollständig gekürzt, nachdem man ihn mit sechs gekürzt hat.

Assoziativgesetz der Addition und Multiplikation (Klammergesetz)

Als Assoziativgesetz bezeichnet man Rechenregeln, die bestimmen, in welcher Reihenfolge mehrere Rechnungen in einer Formel ausgeführt werden. Von besonderer Bedeutung für die Schule sind das Assoziativgesetz der Addition und das Assoziativgesetz der Multiplikation. Beide Gesetze werden bereits in der Grundschule gelernt und sollten von jedem Schüler ohne Probleme angewandt werden können.

Assoziativgesetz der Addition

Das Assoziativgesetz der Addition bezieht sich auf Formeln, in denen mehrere Additionen nacheinander durchgeführt werden. Es besagt, dass es keine Rolle spielt, welche der Additionen zuerst und welche zuletzt durchgeführt werden.

Als Formel ausgedrückt lautet das Assoziativgesetz der Addition:

Assoziativgesetz der Addition

Diese Formel zeigt den Fall, dass drei Zahlen a, b und c addiert werden. Hier kommen wir jedes Mal zum selben Ergebnis, egal in welcher Reihenfolge die Zahlen addiert werden. Es können also sowohl zuerst a und b, als auch b und c addiert werden, bevor die jeweils dritte Zahl addiert wird. Es ist sogar möglich, zuerst a und c zu addieren.

Die Klammern in der Formel geben die Reihenfolge der Rechnung an. Auf der linken Seite der Formel ist die Addition von b und c eingeklammert und wird deshalb vor der Addition mit a durchgeführt. Auf der rechten Seite ist die Addition von a und b eingeklammert und wird vor der Addition von c durchgeführt. Das Assoziativgesetz der Addition besagt, dass bei mehreren Additionen gleichgültig ist, um welche der Addition eine Klammer gesetzt ist und um welche nicht. Das Assoziativgesetz wird deshalb häufig auch „Klammergesetz“ genannt.

Beispiel für das Assoziativgesetz der Addition

Ein Beispiel für das Assoziativgesetz der Addition ist die Berechnung von:

Beispiel für das Assoziativgesetz der Addition

Hier können wir frei entscheiden, welche der beiden Zahlen wir zuerst addieren und welche wir als drittes addieren. So ergibt sich:

Beispiel für die Anwendung des Assoziativgesetzes der Addition

Wenn wir die Regeln des Assoziativgesetz der Addition als Baum darstellen, wird besonders deutlich, wie wir bei der Rechnung vorgehen können:

Baumdarstellung des Assoziativgesetzes der Addition

Assoziativgesetz der Multiplikation

Das Assoziativgesetz der Multiplikation gilt für Formeln, in denen mehrere Zahlen, bzw. Terme, nacheinander multipliziert werden. Es besagt, dass die Reihenfolge, in der die einzelnen Multiplikationen ausgeführt werden, keinen Einfluss auf das Ergebnis hat.

Als Formel ausgedrückt lautet das Assoziativgesetz der Multiplikation:

Assoziativgesetz der Multiplikation

In dieser Formel werden die drei Zahlen a, b und c miteinander multipliziert. Auf der rechten Seite der Formel wird der Fall dargestellt, dass zuerst a und b miteinander multipliziert werden und das Ergebnis anschließend mit c multipliziert wird. Auf der linken Seite wird der Fall dargestellt, dass zuerst b und c miteinander und anschließend mit a multipliziert werden. Es wäre ebenso möglich zuerst a und c miteinander und anschließend mit c zu multiplizieren. Das Assoziativgesetz der Multiplikation besagt, dass alle Rechnungen dasselbe Ergebnis liefern.

Beispiel für das Assoziativgesetz der Multiplikation

Das Assoziativgesetz der Multiplikation können wir beispielsweise bei der Berechnung dieser Formel anwenden:

Beispielmultiplikation

In welcher Reihenfolge wir die Faktoren multiplizieren spielt für das Ergebnis keine Rolle. Es gelten die drei Fälle:

Beispiel für die Klammerung bei der Multiplikation

Wie man leicht überprüfen kann, führen alle drei Rechnungen zu demselben Ergebnis, auch wenn die Faktoren jeweils in anderer Reihenfolge multipliziert wurden.

Brüche erweitern

Will man einen Bruch erweitern, muss man Zähler und Nenner mit derselben Zahl multiplizieren. Weil sich Zähler und Nenner dabei um denselben Faktor vergrößern, ändert sich der Wert des Bruches nicht (das Erweitern eines Bruches entspricht einer Multiplikation mit einem Bruch, der den Wert „1“ hat). Die umgekehrte Operation zum Erweitern von Brüchen ist das Kürzen von Brüchen. Für eine noch ausführlichere Hilfe besteht immer die Möglichkeit einer Mathe Nachhilfe.

Die allgemeine Formeln, um Brüche zu erweitern, lautet:

Brüche erweitern: allgemeine Formel

In der folgenden Tabelle werden mehrere Brüche gezeigt. Sie haben alle unterschiedliche Zähler und Nenner. Ihr Wert ist aber derselbe. Die oberen vier Brüche stellen dabei eine Erweiterung des untersten Bruchs (1/2) dar:

Beispiel: Ein Bruch durch Erweiterung in verschiedene Darstellungen gebracht

Beispiele zum Erweitern von Brüchen

Die folgenden Beispiele zeigen, wir sich Brüche erweitern lassen:

Verschiedene Beispiele zum Erweitern von Brüchen

Im ersten Beispiel wird der Bruch 3/4 mit 2 erweitert, im zweiten 5/7 mit 9 und in den letzten beiden Beispielen wird zweimal der Bruch 1/12 erweitert, einmal mit 12 und einmal mit 6.

Das folgende Beispiel zeigt, was passiert, wenn man einen Bruch zweimal erweitert. Er hat danach dieselbe Darstellung, als hätte man ihn direkt mit dem Produkt der beiden Zahlen erweitert:

Beispiel: Zweimaliges Erweitern

Der Grund hierfür liegt im Assoziativgesetz der Multiplikation

Wozu muss man Brüche erweitern?

Zähler und Nenner werden beim Erweitern größer. Die Bruchrechnung wird dadurch eher komplizierter. Warum soll man Brüche also überhaupt erweitern?

Der Grund liegt darin, dass man zwei Brüche nur dann vergleichen, addieren oder subtrahieren kann, wenn sie denselben Nenner haben. Deshalb muss man Brüche häufig gleichnamig machen. Zwei gleichnamige Brüche sind Brüche, die denselben Nenner haben. Falls man die Brüche nicht auf denselben Nennen bringen kann, indem man einen von ihnen kürzt, muss man die Brüche erweitern. Die einfachste Möglichkeit, zwei Brüche gleichnamig zu machen, ist es, sie jeweils um den Nenner des anderen Bruchs zu erweitern.

Das folgende Beispiel zeigt, wie man die Brüche 3/4 und 1/5 gleichnamig macht. Dabei wird der erste Bruche mit 5, der zweite mit 4 erweitert. Anschließend haben beide denselben Nenner:

Beispiel: Brüche durch Erweitern gleichnamig machen

Ableitungen

Auf dieser Seite findest Du die wichtigsten Ableitungsregeln der Mathematik. Die Ableitung einer Funktion gibt die Steigung des Funktionsgraphen an einem bestimmten Punkt an. Ableitungen werden für eine Vielzahl von Anwendungen der Mathematik benötigt. Zum Beispiel, um das Maximum oder Minimum einer Funktion zu errechnen.

Grundlegende Ableitungsregeln

Formel Bedeutung
Ableitung einer Variablen Ableitung einer Variablen
Ableitung einer Variablen mit Faktor Ableitung einer Variablen mit Faktor
Ableitung einer Quadratfunktion Ableitung einer Quadratfunktion
Ableitung eines Bruches Ableitung eines Bruches
Ableitung einer Wurzel Ableitung einer Wurzel
Allgemeine Ableitungsregel für Potenzfunktionen Allgemeine Ableitungsregel für Potenzfunktionen

Spezielle Ableitungsregeln

Formel Bedeutung
Ableitung von e (Eulersche Zahl) Ableitung von e (Eulersche Zahl)
Ableitung Exponentialfunktion Ableitung einer Exponentialfunktion
Ableitung des Logarithmus Ableitung des Logarithmus
Ableitung des Sinus Ableitung des Sinus
Ableitung des Cosinus Ableitung des Cosinus
Ableitung des Tangens Ableitung des Tangens

Ableitungsregeln für verknüpfte Funktionen

Formel Bedeutung
Summenregel Summenregel
Produktregel Produktregel
Quotientenregel Quotientenregel
Kettenregel Kettenregel

Wozu benötigt man Ableitungen?

Ableitungen geben die Steigung des Graphen einer Funktion an einem Punkt x an. Mit Ableitungen lässt sich also leicht ermitteln, ob und wie stark der Graph steigt oder fällt. Das hat mehrere Vorteile. Wenn beispielsweise ein Wert von der Zeit t abhängt, kann man mit Ableitungen berechnen, wie schnell er sich zu einem bestimmten Zeitpunkt ändert. Außerdem kann man mit Ableitungen von Funktionen die Maxima oder Minima der Funktionen berechnen. Dort, wo die erste Ableitung null ist, befindet sich in jedem Fall ein Extrempunkt. Wenn die zweite Ableitung negativ ist, handelt es sich um ein Maximum, wenn sie aber positiv ist, handelt es sich um ein Minimum. Natürlich gibt es noch viel mehr Fälle in denen man Ableitungen für Mathe braucht.

Es ist sinnvoll, wenn Schüler regelmäßig die wichtigsten Ableitungen üben. Natürlich können sie auch jedesmal in einer Ableitungen Tabelle nachschauen. Damit lernen sie sie aber nicht wirklich, sondern müssen immer eine Formelsammlung dabei haben, wenn sie mit ihnen rechnen wollen. Das ist für Klausuren und Klassenarbeiten noch vertretbar, aber gerade im Studium oder im Berufsalltag kann es sein, dass sie schnell einmal eine Formel durchrechnen müsse, ohne eine Formelsammlung Mathe zur Hand zu haben. Es ist daher immer sinnvoll wenn Schülern selbst Ableitungen bilden können. Das ist sogar noch sinnvoller, als für jede Funktion die jeweilige Ableitung auswendig zu lernen.

Am besten üben Schüler, indem sie immer wieder für Ableitungen Übungsaufgaben durchrechnen. So werden sie mit ihnen vertraut und lernen, wie sie sie nutzen müssen. Schließlich gibt es in der fortschritlichen Mathematik kaum etwas so wichtiges wie Ableitungen.

 

Brüche addieren und subtrahieren

Brüche werden addiert, indem man sie zuerst auf denselben Nenner bringt und anschließend ihre Zähler addiert. Die allgemeine Formel zur Addition von Brüchen, in der beide Schritte zusammengefasst sind, lautet:

Addition von Brüchen mit unterschiedlichem Nenner

Brüche werden subtrahiert, indem man sie ebenfalls zuerst auf denselben Nenner bringt und anschließend ihre Zähler subtrahiert. Die allgemeine Formeln zur Subtraktion von Brüchen, in der wieder beide Schritte zusammengefasst sind, lautet:

Formel: Brüche subtrahieren

Wie werden die Nenner bei der Addition von Brüchen behandelt?

Zu den wichtigsten Regeln beim Bruchrechnen gehört, dass nur gleichnamige Brüche, d.h. Brüche mit dem gleichen Nenner, addiert oder subtrahiert werden dürfen. Die Nicht-Beachtung dieser Regel ist ein häufiger Fehler. Jeder Schüler sollte sie daher im Schlaf beherschen.

Damit zwei Brüche addiert oder subtrahiert werden dürfen, muss man sie zunächst auf denselben Nenner bringen. Falls der Nenner des einen Bruches ein Vielfaches des Nenners des anderen Bruchs ist, lassen sich die beiden Brüche sehr einfach auf denselben Nenner bringen. Manchmal genügt es sogar den Summanden mit dem größeren Nenner zu kürzen. In der Regel wird man aber den Summanden mit dem kleineren Nenner auf den größeren Nenner erweitern.

Falls beide Summanden unterschiedliche Nenner haben, ist es schwieriger sie nennergleich zu machen. In diesem Fall gibt es zwei Möglichkeiten: Entweder sucht man zunächst das kleinste gemeinsame Vielfache der Nenner (kgV) und erweitert beide Brüche auf diesen Nenner, oder man erweitert jeden der beiden Brüche mit dem Nenner des jeweils anderen Bruchs (wie oben in den Formeln zum Subtrahieren und Addieren von Brüchen dargestellt). Falls man sich für die zweite Möglichkeit entscheidet, sollte man die Summe, bzw. die Differenz der beiden Brüche im Anschluss aber noch einmal kürzen.

Beispiele für die Addition und Subtraktion von Brüchen

Die folgende Grafik verdeutlicht, wie Brüche addiert werden:

Brüche addieren: Grafisches Beispiel

In den oberen beiden Zeilen werden die ursprünglichen Brüche (2/5 und 1/3) dargestellt. In der dritten Zeile sieht man das Ergebnis der Addition als Strecke. Man kann hier aber noch nicht die Darstellung dieser Summe als Bruch ablesen. Hierfür ist es notwendig die beiden Brüche zunächst nennergleich zu machen (4. Zeile) und anschließend die Zähler zu addieren (5. Zeile).

Zwei weitere Beispiele für die Addition von Brüchen sind:

Beispiele zur Addition von Brüchen

Und zwei Beispiele für die Subtraktion von Brüchen sind:

Beispiele für die Subtraktion von Brüchen

 

Binomische Formeln

Die binomischen Formeln gehören zum grundlegenden Rüstzeug für Schüler aller Schularten. Mit Hilfe der binomischen Formeln wird die Potenz der Summe zweier Zahlen (häufig als a und b bezeichnet) gebildet. Die Rechnung mit Potenzen wird auf diese Weise erheblich vereinfacht. Anstatt nämlich zwei große Zahlen multiplizieren zu müssen, brauchen die Schüler nach Anwendung der binomischen Formeln nur noch zwei kleinere Zahlen miteinander zu multiplizieren und deren Summe zu bilden.

In der Mathematik werden drei binomische Formeln unterschieden:

  • Die erste binomische Formel beschreibt den Fall, dass zwei Zahlen a und b addiert und die Summe potenziert wird.
  • Die zweite binomische Formel wird in dem Fall angewendet, dass b von a subtrahiert wird.
  • Die dritte binomische Formel wird schließlich angewendet, wenn wir zwei unterschiedliche Faktoren haben, nämlich einen, in dem a und b addiert, und einen, in dem b von a subtrahiert wird.

Zu den wichtigen Punkten, die ein Schüler im Zusammenhang mit den binomische Formeln lernen muss, gehört es zu erkennen, welche der drei binomischen Formeln in einer konkreten Aufgabe angewandt werden muss.

Binomische Formeln

Formel Bedeutung
Erste binomische Formel Erste binomische Formel
Zweite binomische Formel Zweite binomische Formel
Dritte binomische Formel Dritte binomische Formel

Grafische Herleitung

Schaubild zur grafischen Herleitung der ersten binomischen Formel

Die obige Grafik zeigt, wie sich die erste binomische Formel grafisch herleiten lässt. Sie zeigt ein Quadrat, dessen Kantenlänge a + b beträgt. Seine Fläche lässt sich daher mit (a + b)2 berechnen. Dieses Quadrat setzt sich wiederum aus verschiedenen Flächen zusammen. Die grün umrandete Fläche entspricht mit a2 dem ersten Summanden der binomischen Formel, die blau umrandete mit b2 dem letzten Summanden. Die beiden rot umrandeten Rechtecke, deren Fläche jeweils a * b beträgt, entsprechen zusammen dem mittleren Summanden 2ab. Anhand dieser einprägsamen Grafik lässt sich sofort erkennen, dass die Fläche des großen Quatdrats (a + b)2 der gemeinsamen Fläche der beiden kleinen Quadrate und der beiden Rechtecke (a2 + 2ab + b2) entspricht. Hierin finden wir also die erste binomische Formel wieder:

Erste binomische Formel mit Farben

Herleitung der 3 binomischen Formeln

Die binomischen Formeln werden hergeleitet, in dem zuerst die Potenz hoch zwei aufgelöst wird in die Multiplikation zweier Summen (bzw. zwei Differenzen oder einer Summe mit einer Differenz). Anschließend wird zuerst die Summe in der vorderen Klammer ausmultipliziert. Jeder der beiden Summanden wird mit der zweiten Klammer multipliziert. Anschließend wird auch die zweite Klammer ausmultipliziert. Wir haben nun vier Summanden mit unterschiedlichen Vorzeichen. Zwei der Summanden sind die Quadrate von a und b. Die beiden anderen Summanden jeweils das Produkt aus a und b. Die drei binomischen Formeln unterscheiden sich in den Vorzeichen ihrer Summanden. Durch Zusammenfassung der Summanden werden die binomischen Formeln in ihre endgültige Form aus drei, bzw. zwei Summanden gebracht.

Herleitung der 1. binomischen Formel

Herleitung der ersten binomischen Formel

Herleitung der 2. binomischen Formel

Herleitung der zweiten binomischen Formel

Herleitung der 3. binomischen Formel

Herleitung der dritten binomischen Formel